likelihood function

 

In Bayesian statistics, the likelihood function is the conditional probability of an event representing evidence or an observation, ie., data, given a second event, sometimes called a parameter.

Consider an event and evidence of that event, another event itself, B. The likelihood function is the conditional probability P(B|A).

In contrast, the posterior probability is the conditional probability of the event A given the evidence of the event, B, P(A|B).

The likelihood function and the posterior probability are related through Bayes’ Theorem:

P(A|B) =\displaystyle \frac{P(B|A) P(A)}{P|B}

« Back to Glossary Index
 Posted by at 2:50 pm

 Leave a Reply

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code class="" title="" data-url=""> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong> <pre class="" title="" data-url=""> <span class="" title="" data-url="">

(required)

(required)