empty set

 

In mathematics, the empty set is the unique set having no elements, or a cardinality of zero. It is unique because in set theory, two sets are equal if they have the same elements. As a result there can only be one set with no elements – the (not an) empty set.

The empty set is usually denoted {} or $\emptyset$.

Properties

  • The empty set is a subset of all sets.
    $\forall A : \emptyset \subset A$
  • The union of a set with the empty set is the set itself.
    $\forall A : A \cup \emptyset = A$
  • The intersection of any set with the empty set is the empty set.
    $\forall A : A \cap \emptyset = \emptyset$
  • The Cartesian product of any set and the empty set is the empty set.
    $\forall A : A \times \emptyset = \emptyset$
« Back to Glossary Index
 Posted by at 9:02 pm

 Leave a Reply

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code class="" title="" data-url=""> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong> <pre class="" title="" data-url=""> <span class="" title="" data-url="">

(required)

(required)